Angular average of time-harmonic transport solutions
نویسندگان
چکیده
We consider the angular averaging of solutions to time-harmonic transport equations. Such quantities model measurements obtained for instance in optical tomography, a medical imaging technique, with frequency-modulated sources. Frequency modulated sources are useful to separate ballistic photons from photons that undergo scattering with the underlying medium. This paper presents a precise asymptotic description of the angularly averaged transport solutions as the modulation frequency ω tends to ∞. Provided that scattering vanishes in the vicinity of measurements, we show that the ballistic contribution is asymptotically larger than the contribution corresponding to single scattering. Similarly, we show that singly scattered photons also have a much larger contribution to the measurements than multiply scattered photons. This decomposition is a necessary step toward the reconstruction of the optical coefficients from available measurements.
منابع مشابه
Thermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method
The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathemat...
متن کاملEquivalent diffusion coefficient and equivalent diffusion accessible porosity of a stratified porous medium
Diffusion is an important transport process in low permeability media, which play an important role in contamination and remediation of natural environments. The calculation of equivalent diffusion parameters has however not been extensively explored. In this paper, expressions of the equivalent diffusion coefficient and the equivalent diffusion accessible porosity normal to the layering in a l...
متن کاملEFFECT OF TIME-DEPENDENT TRANSPIRATION ON AXISYMMETRIC STAGNATION-POINT FLOW AND HEATTRANSFER OF A VISCOUS FLUID ON A MOVING CIRCULAR CYLINDER
Effect of time dependent normal transpiration on the problem of unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder moving simultaneously with time-depended angular and axial velocities and with time-dependent wall temperature or wall heat flux are investigated. The impinging free stream is steady with a strain rate . A re...
متن کاملThe noncommutative harmonic oscillator in more than one dimensions
The noncommutative harmonic oscillator in arbitrary dimension is examined. It is shown that the ⋆-genvalue problem can be decomposed into separate harmonic oscillator equations for each dimension. The noncommutative plane is investigated in greater detail. The constraints for rotationally symmetric solutions and the corresponding twodimensional harmonic oscillator are solved. The angular moment...
متن کاملAnalytical Solutions for Spatially Variable Transport-Dispersion of Non-Conservative Pollutants
Analytical solutions have been obtained for both conservative and non-conservative forms of one-dimensional transport and transport-dispersion equations applicable for pollution as a result of a non-conservative pollutant-disposal in an open channel with linear spatially varying transport velocity and nonlinear spatially varying dispersion coefficient on account of a steady unpolluted lateral i...
متن کامل